Avec Mon Plaisir

Determiner Une Suite Geometrique Et

La raison de la suite géométrique est donc $q=2$ Raison d'une suite géométrique: méthode résumée Pour trouver la raison d'une suite géométrique avec deux termes, il faut donc suivre les étapes suivantes: Exprimer les deux termes donnés avec la formule en fonction de n Réaliser le quotient de ces deux termes et simplifier Utiliser la racine carrée ou la racine cubique pour trouver la valeur de la raison Conclure selon le cas de figure La raison est l'élément caractéristique d'une suite géométrique. Connaître sa valeur permet de calculer la limite de la suite et de déterminer le sens de variation. La valeur de la raison peut aussi provenir de la justification par l'énoncé.

  1. Determiner une suite geometrique somme
  2. Determiner une suite geometrique le
  3. Determiner une suite geometrique de la
  4. Determiner une suite geometrique de

Determiner Une Suite Geometrique Somme

Si la raison d'une suite géométrique est égale à 1, alors cette est constante (c'est-à-dire que tous les termes de la suite seront égaux au terme initial). Pour tous les exemples qui suivront, on parlera d'une suite géométrique de raison q avec q ≠ 1 et q ≠ 0. Formation d'un terme de rang quelconque d'une suite géométrique Soit a le premier terme d'une suite géométrique ayant pour raison q avec q ≠ 1 et q ≠ 0. Le 1 er terme étant a, le 2 ème est a × q ou aq, le 3 ème est aq × q ou aq 2, le 4 ème aq 2 × q ou aq 3, etc. On en déduit que le nième terme est `a × q^{n−1}`. Le n ième terme d'une suite géométrique est égal au produit du premier terme par la raison élevée à la puissance (n−1). Le nième terme de la suite est donc donnée par la formule suivante: `a×q^{n−1}`. Par exemple, le 10 ème d'une suite géométrique ayant pour premier terme 1 et pour raison 2, sera: 1 × 2 10−1 = 1 × 2 9 = 2 9 = 512. Propriétés d'une suite géométrique P 1: Soit (u n) une suite géométrique de raison q. Soient n et p deux entiers naturels, nous avons: `u_n = q^{n−p}×u_p`.

Determiner Une Suite Geometrique Le

Déterminer l'expression générale d'une suite géométrique - Première - YouTube

Determiner Une Suite Geometrique De La

Soit \left( u_n\right) une suite arithmétique définie par récurrence: \begin{cases}u_{n_0} \\ \forall n\in \mathbb{N}, \, u_{n+1} = u_n \times q\end{cases}. Pour déterminer son sens de variation, on doit étudier le signe de la raison q. On considère la suite définie pour tout entier n\geq 2 par: u_n=\dfrac{n}{n-1}. Déterminer le sens de variation de la suite u. Etape 1 Calculer \dfrac{u_{n+1}}{u_n} Lorsque tous les termes sont strictement positifs, on peut déterminer le sens de variation de la suite en comparant le rapport \dfrac{u_{n+1}}{u_n} avec 1. Pour tout entier n\geq 2, n>0 et n-1>0, donc u_n>0. Les termes de la suite (u_n)_{n\geq 2} sont bien strictement positifs. Soit n\in\mathbb{N}-\{0; 1\}. \dfrac{u_{n+1}}{u_n}=\dfrac{\frac{n+1}{n}}{\frac{n}{n-1}}=\dfrac{n+1}{n}\times \dfrac{n-1}{n}=\dfrac{n^2-1}{n^2} Etape 2 Déterminer le sens de variation de la suite Lorsque tous les termes sont strictement positifs, le rapport \dfrac{u_{n+1}}{u_n} = q donne le sens de variation: si 01, la suite est strictement croissante Comme on a nécessairement 0\leq n^2-1

Determiner Une Suite Geometrique De

Déterminer une suite géométrique - Première - YouTube

La suite (u_n)_{n\geq 2} est donc strictement décroissante.

Poids Du Thon
July 30, 2024, 9:37 am