Avec Mon Plaisir

1Ère - Cours - Les Suites Arithmétiques

Cet ensemble contient l'ensemble des nombres entiers naturels et relatifs, l'ensemble des nombres décimaux, des fractions et des irrationnels. Les nombres premiers Un nombre premier est un nombre qui n'est divisible que par lui-même et par 1. Important! 1 n'est pas un nombre premier et 2 est le seul nombre premier pair. Apprenez par cœur les 15 premiers nombres premiers: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 43, 47, 53. Les plus motivés (ceux qu'ils veut obtenir un score Tage Mage supérieur à 400 connaitront leurs nombres premiers jusqu'à 101!!!! ) Division euclidienne Si a et b sont deux entiers relatifs, b différent de 0, il existe des entiers q et r déterminés de manière unique par les conditions suivantes: a = bq + r avec q s'appelle le quotient de la division de a par b et r est le reste de cette division. Arithmétique - Cours - Fiches de révision. Si le reste est nul, cela signifie qu'il existe un entier q tel que a = bq; on dit alors que b divise a, ou que a est un multiple de b. Exemple: je veux diviser 74 par 7. J'obtiens: a = 74, b = 7, q = 10 et r = 4.

Fiche Révision Arithmetique

Corollaire: Si d est le PGCD de deux entiers a et b, alors il existe des entiers u et v tels que: au + bv = d. Théorème…

Fiche De Révision Arithmétique 3Ème

Je vérifie bien que r est inférieur ou égal à b – 1, ce qui est le cas, et je peux alors écrire: 74 = 7 fois 10 + 4 Critères de divisibilité Les épreuves de Calcul et de Conditions Minimales au Tage Mage font largement appel à votre maîtrise parfaite du calcul mental: vous serez souvent amené à faire des calculs souvent simples mais rapides de tête (additions, multiplications, puissances, simplification de fractions). Vous n'avez jamais le droit à la calculatrice. Critère de divisibilité par 2 Un nombre N est divisible par 2 si et seulement si il se termine par 0, 2, 4, 6 ou bien 8… autrement dit si et seulement si il est pair. Critère de divisibilité par 3 Un nombre N est divisible par 3 si et seulement si la somme de ses chiffres est divisible par 3. Fiche revision arithmetique. A vous de jouer: parmi les 5 nombres suivants, lesquels sont divisibles par 3? 123 – 516 – 111 – 87156 – 8176 Critère de divisibilité par 4 Un nombre N est divisible par 4 si et seulement si il se termine par 2 chiffres AB constituant un nombre divisible par 4, c'est-à-dire si et seulement si le dernier chiffre B est égal à 0, 4 ou 8 – pour un avant-dernier chiffre A pair – ou bien égal 2 ou 6 pour un avant-dernier chiffre B impair.

Fiche Révision Arithmétiques

A Suites arithmétiques DÉFINITION Une suite arithmétique est une suite numérique dont chaque terme s'obtient en ajoutant au précédent un nombre réel constant r appelé raison. Pour tout nombre entier naturel n, u n +1 = u n + r. EXEMPLES 1° La suite ( u n) des nombres entiers naturels pairs est une suite arithmétique de premier terme u 0 = 0 de raison r = 2: pour tout entier naturel n, u n +1 = u n + 2. 2° Soit ( v n) la suite arithmétique de premier terme v 0 = 2 et de raison r = – 1; v 1 = v 0 + r; v 1 = 2 – 1; v 1 = 1; v 2 = v 1 + r; v 2 = 1 – 1; v 2 = 0; v 3 = v 2 + r; v 3 = – 1. Fiche révision arithmetique . Une suite arithmétique de raison r est: croissante, si r > 0; décroissante, si r constante si r = 0. La représentation graphique d'une suite arithmétique ( u n) dans un repère du plan est constituée de points alignés de coordonnées ( n, u n). B Suites géométriques DÉFINITION Une suite géométrique est une suite numérique dont chaque terme s'obtient en multipliant le précédent par une constante q appelé de raison.

On considère la suite arithmétique $\left(u_n\right)$ de raison $r$ telle que $u_3=7$ et $u_8=10$. On a alors: $\begin{align*} u_8=u_3+(8-3)r &\ssi 10=7+5r \\ &\ssi 3=5r \\ &\ssi r=\dfrac{3}{5}\end{align*}$ $\quad$ II Sommes de termes Propriété 3: Pour tout entier naturel $n$ non nul on a $1+2+3+\ldots+n=\dfrac{n(n+1)}{2}$. Tage Mage : Fiche de révision gratuite – Arithmétique - Prépa Aurlom. Preuve Propriété 3 Pour tout entier naturel $n$ non nul on note: $S_n=1+2+3+\ldots +n$. On a ainsi $S_n=1+2+3+\ldots+(n-2)+(n-1)+n$ En écrivant cette égalité en partant de la droite on obtient $S_n=n+(n-1)+(n-2)+\ldots+3+2+1$. En faisant la somme de ces deux expressions on obtient: $2S_n=(n+1)+(n+1)+(n+1)+\ldots+(n+1)+(n+1)+(n+1)$ On obtient ainsi $n$ facteurs tout égaux à $(n+1)$. Par conséquent $S_n=\dfrac{n(n+1)}{2}$ [collapse] Exemple: Si $n=100$ on obtient alors $\begin{align*}1+2+3+\ldots+100&=\dfrac{100\times 101}{2} \\ &=5~050\end{align*}$ Propriété 4: On considère une suite arithmétique $\left(u_n\right)$ de raison $r$ et deux entiers naturels $n$ et $p$ tels que $n

Recouvrir Un Bureau De Cuir
July 30, 2024, 10:11 am